
Sailing Basics

wind

Buoy

1



My moto:

Sailing - wind shift

wind

Buoy

2

a

a

a



Sailing competition
getting first

Boat 1

Boat 2

wind

Buoy

- What is the Strategy of Boat 1?

- What is the Strategy of Boat 2?

My Moto: Do not follow  Invent
3



25th American Cap – September 23rd 1983 
(Trophy was held by NYYC from 1857)

Liberty I against Australia II
7 rounds race; Status: Score  3:0 to Liberty I,  4th round started

4

wind

Buoy

Start line



Uri Weiser
Technion

Haifa, Israel

Potential future research in computing

Heterogeneous systems’ optimization
memory subsystems - Process-in-Storage when?

1
The talk covers research done by: Prof. Y. Etsion,  Prof. I. Keidar, Prof. A. Kolodny, T. Morad, , Prof. A. Mendelson,   G. Shmron, Prof. U. Weiser



2

The talk today

 The environment changes

 Slow down in Moore's law

 Slow down in the ability to enhance single core performance

  Heterogonous systems

 Big Data

 Potential change in the way we handle data

  new thinking about moving data?

 Heterogeneous system optimization

 Big Data --- data handling

 Is it data movement?

 Is it bandwidth?

 Example



2

Environment changes
 Slow down in process technology

 Slow down in Single thread core performance trend

 Power limitation

!

!
!

!



2

Environment changes
 Slow down in process technology

 Slow down in Single thread core performance trend

 Power limitation

The Era of Heterogeneous systems (we are there already)

 How to handle heterogeneousity?

 Heterogeneous vs. general purpose engine?

 Size, power, energy, location of the accelerators?

 Application phase specific



2

A New Architecture Avenues?

 Heterogeneous computing

 The Era of Heterogeneous systems

 HW/SW to fit application

 Dynamic tuning

 Accelerators

  Optimizations: performance, energy efficiency

 Big Data = big

 In general non repeated access to all the 

“Big Data”

 What are the implications?



Heterogeneous computing 

Performance/power

Apps range

Continue performance trend by via Heterogeneous systems

P
e
rf

o
rm

a
n

c
e
/p

o
w

e
r

Accelerators

3



Heterogeneous Computing

P
e

rf
o

rm
an

ce
s/

P
o

w
e

r

General Purpose

Accelerator

11



Heterogeneous Systems’ 

Environment

Environment with limited resources

Need to optimize system’s targets within 

resource constrains

Resources may be:
- Power, energy, area, space, $

System's targets may be:
- Performance, power, energy, area, space, $

12



Heterogeneous system 

Heterogeneous system design under resource 

constraint
how to divide resources (e.g. area, power, energy) to achieve maximum 

system’s output (e.g. performance, throughput, energy savings)

Accelerator target (an example): Minimize execution time under Area constraint

𝑎1
𝑎2

𝑎3

𝑎𝑛

𝑎4

𝑨 =෍

𝒊=𝟏

𝒊=𝒏

𝒂𝒊

t2 t3 tnt1

time

ti = execution time of an application’s section (run on a reference computing system) 

Example:

13



MultiAmdahl:

t1* F1(a1)+      t2* F2(a2)      + + tn* Fn(an)

a4

𝑎1

𝑎2

𝑎3

𝑎𝑛

t2 t3 tnt1

F1(a1) F2(a2) Fn(an)

T =

A =  a1 + a2 + a3 + … + an 

Target:  Minimize T under a constraint  A

14



MultiAmdahl:

Optimization using Lagrange 

multipliers
Minimize execution time (T) 

under an Area (a) constraint

t2 t3 tnt1

F1(a1) F2(a2) Fn(an)

15

tj F’j(aj) = ti F’i(ai)  

F’= derivation of the accelerator function

ai = Area of the i-th accelerator

ti =  Execution time on reference computer



MultiAmdahl Framework

Applying known techniques* to 

new environments

Can be used during system’s 

definition and/or dynamically to 

tune system 

* Gossen’s second law (1854), Marginal utility, Marginal rate of substitution (Finance)

16



Example: CPU vs. Accelerators

Future GP CPU size vs. transistor budget growth

Test case: 
4 accelerators and GP (big) CPU

Applications: evenly distributed 
benchmarks mix w/ 10% sequential code 

Heterogeneous Insight: 

In an increased-transistor-budget-environment, 

General Purpose (big) CPU importance will grow 17



Example: CPU vs. Accelerators

GP CPU size vs. power budget

Test case: 
4 accelerators and GP (big) CPU

Applications: evenly distributed 
benchmarks mix w/ 10% sequential code 

18

Heterogeneous Insight: 

In a decreased-power-budget-environment, 

Accelerators importance will grow



What is F(ai)?

You can look at it as the acceleration vs. 

area (or energy, power etc.) BUT

There are more parameters that impact the 

function F(ai) e.g. LOCATION*

* example as part of the “Process In Storage”

19



2

Big Data

 90% of data in the world has been created in the 

last 2 years

 By 2020 world’s data will grow 50 times from today 

  Change the way we handle

  Big Data processing



2

Big Data Environment

Big Data = big

 In most of the cases some of the data is irrelevant 

(Extract Transform and Load (ETL)) for the solution 

or its relevancy is simple (e.g. wordcount)  

 In general there is a non repeated access to all the

“Big Data”

 What are the implications?



4

A New Architecture Avenues in 

Big Data Environment

 Heterogeneous computing – ”tuning” HW to 

respond to specific needs

 example: Big Data memory access pattern

 Potential savings

Data Movements

 Bandwidth



Heterogeneous computing :

Application Specific Accelerators

Performance/power

Apps range

Continue performance trend by tuned architecture to bypass current technological hurdles

P
e
rf

o
rm

a
n

c
e
/p

o
w

e
r

Accelerators

3

Tuned architectures

Apps behavior



6

Reduction of system’s energy in 

Big Data environment

 understand where energy is wasted

 Identify the energy hungry parts and performance 

bottleneck

 Provide a TAILORED solution for Data Center* 

usage

* It would not be simple



Input: Unstructured data

Big Data  usage of DATA

7

Read Once

Non-Temporal 

Memory Access

Funnel

beta=
BWout

BWin



Structuring

Input: Unstructured data

Structured data (aggregation)

A

ML Model creation

Data structuring = ETL

C

B

C Model usage @ client

8

Machine Learning



9

Does Big Data exhibit special 

memory access pattern?

It probably should since
 Revisiting ALL Big Data items will cause huge/slow

data transfers from Data sources

 There are 2 access modes of memory operations: 

 Temporal Memory Access

 Non-Temporal Memory access

 Many Big Data computations exhibit a Non-Temporal

Memory-Accesses and/or Funnel operation



Non-Temporal Memory access 
Initial analysis: Hadoop-grep Single Memory Access Pattern

~50% of Hadoop-grep unique memory references are single access 

10



Non-Temporal Memory Accesses
Preliminary Results

WordCount:

Access to Storage:
Non-temporal locality

Sort: 

Access to Storage:
NO Non-temporal locality

0

10000

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50

Time [s]

WordCount I/O Utilization

0

20000

40000

60000

80000

100000

120000

0 200 400 600 800 1000 1200

Time [s]

SORT I/O 

Access rate

[KB/s]

Time

Time

11

Access rate

[KB/s]



Current systems 

12

• Memory subsystem is tuned for “Temporal Memory Access”

 DRAM – tuned for repeated page access

 Cache – tuned for repeated cache block access 

L1$

L2$

LLC Cache

DRAM

NV Storage

Registers

3GB/sec

25GB/sec

500GB/sec

TB/sec

Core

“
C

a
c
h

e
s

”

However, many Big Data applications exhibit 

Non-Temporal Memory Accesses (NTMA)



13

Where energy is wasted?

• DRAM

• Limited BW



From: Mark Horowitz, Stanford “Computing’s Energy Problems” 

From: Bill Dally (nVidia and Stanford), Efficiency and Parallelism, the challenges of future computing

14



Energy:

DRAM

15



Memory Subsystem - copies

L1$

L2$

LL Cache

DRAM

NV Storage

RegistersKBs

10’s KBs

MBs

TBs

GBs

10’s MBs

3GB/sec

25GB/sec

500GB/sec

TB/sec

Size

Core

BW

- Source

Copy 1 (main memory)

Copy 2 (LL Cache)

Copy 3 (L2 Cache)

Copy 4 (L1 Cache)

Copy 5 (Registers) - Destination

16



Memory Subsystem – DRAM bypass == DDIO

L1$

L2$

LL Cache

DRAM

NV Storage

Registers

3-20GB/sec

25GB/sec

500GB/sec

TB/sec

Core

BW

- Source

Copy 1 (main memory)

Copy 2 (LL Cache)

Copy 3 (L2 Cache)

Copy 4 (L1 Cache)

Copy 5 (Registers) - Destination

Potential savings:

@ 0.5n J/B (DRAM)

10 – 20 GB/s NV BW

 5W – 10W

Reference: “Optimizing Read-Once Data Flow in Big-Data Applications”

Morad, Ghomron, Erez, Weiser, Kolodny, in Computer Architecture Letters Journal 2016 17



Initial Experiment

Example program: read file from disk and XOR all values

DDIO-aware code on a real system
Small buffer (fit into 2 ways of LLC)

Low latency from write to read (avoid evictions)

Zero-copy (O_DIRECT flag)

Bypass OS page cache (O_DIRECT flag)

Run code on chip that is connected to the SSD (OS affinity)

Compare system with DDIO enabled and DDIO disabled

Measure runtime, power and energy

18



Bandwidth
When should we use Funnel at the Data source 

19



Memory Hierarchy is Optimized for 
A: Bandwidth issue  System are built for Temporal Locality 

20
Highest Bandwidth

L1$

L2$

LLC Cache

DRAM

NV Storage

RegistersKBs

10’s KBs

MBs

TBs

GBs

10’s MBs

3-20GB/sec

25GB/sec

500GB/sec

TB/sec

Size

Core

BW Existing 

BW

NTMA 

Desired BW



# of cores

Bandwidth

[MB/s]

# of cores

CPU

utilization

[%]

Bandwidth

[MB/s]
Read Once – Non-Temporal Memory Accesses

# of cores

Bandwidth
[MB/s]

CPU

utilization

[%]

Temporal Memory Accesses

# of cores

Bandwidth

[MB/s]

Hint: Memory access per operation

B: Memory access per operation impact BW

CPU Utilizations 

21



Solution: 

Flow of “Non-Temporal Data Accesses” 

Core

L1$

L2$

LLC Cache

DRAM

NV Storage

Registers

The Funnel

22

Use Funnel when Bandwidth bottleneck occurs

- “high” memory accesses per Instruction

- Limited BW

- Non temporal locality memory access

*private communication with: Moinuddin Qureshi



“Funnel”ing “Read-Once” data in storage

*Kang, Yangwook, Yang-suk Kee, Ethan L. Miller, and Chanik Park. "Enabling cost-effective data processing with smart ssd." In Mass Storage Systems 

and Technologies (MSST), 2013 IEEE 29th Symposium on, pp. 1-12. IEEE, 2013.

**K. Eshghi and R. Micheloni. “SSD Architecture and PCI Express Interface”

Typical SDD architecture*

23

http://www.ssrc.ucsc.edu/media/papers/kang-msst13.pdf
https://www.google.co.il/url?sa=t&rct=j&q=&esrc=s&source=web&cd=14&cad=rja&uact=8&ved=0CGoQFjAN&url=http://www.springer.com/cda/content/document/cda_downloaddocument/9789400751453-c1.pdf?SGWID=0-0-45-1354508-p174543000&ei=CSVzVb2ILsPpUo


Analytical model of the Funnel
42

Post 

process

Bandwidth (BW)  IN

Bandwidth BW OUT

Funnel

B

B

= BWOUT/BWIN

24



Purposed Architecture

43

PCIe

TL
B

CPU performs NTMA and TMA work

SSD Storage  

B

Funnel

B=Bandwidth

Baseline Configuration

PCIe

TL
B

2,LcE

CPU performs  TMA workSSD performs NTMA work

B

Funnel

Funnel Configurations

B

B B

25



Funnel Performance44

P
e

rf
o

rm
a

n
c
e

 im
p

ro
v
e

m
e

n
t

CPU becomes 

bottleneck

CPU becomes 

bottleneck

𝟏

𝐏𝐂𝐈𝐞 𝐁𝐖

𝟏

𝐒𝐒𝐃 𝐁𝐖

PCIe
TL

B

CPU performs NTMA 

and TMA work

SSD Storage  

B

Funnel

B=Bandwidth

PCIe

TL
B

2,LcE

CPU performs:  TMA 

work
SSD performs NTMA 

work

B

Funnel

beta

beta

P
e

rf
o

rm
a

n
c

e

26



Funnel energy

Funnel 

improvement

CPU becomes the 

bottleneck

Funnel processor 

overhead

PCIe
TL

B

CPU performs NTMA 

and TMA work

SSD Storage  

B

Funnel

B=Bandwidth

PCIe

TL
B

2,LcE

CPU performs TMA 

work
SSD performs NTMA 

work

B

Funnel

beta

E
n

e
rg

y

CPU becomes the 

bottleneck

27



Solution: ?

Non-Temporal Memory Accesses should be 

processed as close as possible to the data source

Data that exhibit Temporal Locality should use 

current Memory Hierarchy

Use Machine Learning (context aware*) to distinguish 

between the two phases

Open questions:
SW model

Shared Data

HW implementation

Computational requirement at the “Funnel”

*Reference: “Semantic locality and Context based prefetching” Peled, Mannor, Weiser, Etsion in ISCA 2015
30



Summary

Lots of potential icebreaking potential research

Hetro

Big Data related

Memory access is a critical path in computing

Funnel should be used for:
Reduction of Data movement

Free up system’s memory resources (re-Spark)

Solve the System’s BW issues for “Read Once” cases

Simple-energy-efficient engines at the front end

Issues

…

31



48


