Sailing Basics

My moto:
Sailing - wind shift

Sailing competition
getting first

- What is the Strategy\of\Boat 17?

Boat 1

- What is the Strategy of Boat 2?7 _a
Boat 2

My Moto: Do not follow = Invent

25th American Cap — September 2374 1983

(Trophy was held by NYYC from 1857)

_ ‘ Liberty | against Australia Il
wind

7 rounds race; Status: Score 3:0to Liberty I, 4" round started

Start line

nnnnnnnn

Potential future research in computing

Heterogeneous systems’ optimization

memory subsystems - Process-in-Storage when?

d

d

The environment changes
= Slow down in Moore's law
= Slow down in the ability to enhance single core performance
> =» Heterogonous systems
= Big Data
» Potential change in the way we handle data
> =» new thinking about moving data?
Heterogeneous system optimization
Big Data --- data handling
= |s it data movement?
= |s it bandwidth?
Example

= Slow down in process technology
= Slow down in Single thread core performance trend
= Power limitation

rénsistors
(Thousands)

Performance
(SpecINT)

; Fregquency
- MHZ)

P j Ty[:;)ical Powe
EV S S (Watts)

. Nu:mber
" of Cores -

1975 1980 1985 1990 1995 2000 2005 2010 2015

=>» The Era of Heterogeneous systems (we are there already)
» How to handle heterogeneousity?
» Heterogeneous vs. general purpose engine?
» Size, power, energy, location of the accelerators?
=» Application phase specific

1 Heterogeneous computing

* The Era of Heterogeneous systems

= HW/SW to fit application

= Dynamic tuning

= Accelerators

= = Optimizations: performance, energy efficiency
4 Big Data = big

d In general non repeated access to all the

“Big Data”
d What are the implications?

Heterogeneous computing

Accelerators *

|

Performance/power

—J\ :

Apps range

Continue performance trend by via Heterogeneous systems

Heterogeneous Computing

Accelerator

General_Purpose

N\

S
Q
3
@)
a.
S~
wv
Q
9
c
(]
=
—
(@)
[Pt
- -
Q
Q.

11

Heterogeneous Systems’
Environment

»

Environment with limited resources

Need to optimize system’s targets within
resource constrains

® Resources may be:
-Power, energy, area, space, $

® System's targets may be:

- Performance, power, energy, area, space, $

»

12

Heterogeneous system

®* Heterogeneous system design under resource

constraint

how to divide resources (e.g. , power, energy) to achieve maximum
system’s output (e.g. performance, throughput, energy savings)

Example:

e, > e, —

3 n

«—t, >E—1t,

t; = execution time of an application’s section (run on a reference computing system)

(14 =)
a, A= z a;
! i=1

Accelerator target (an example): Minimize execution time under Area constraint

13

MultiAmdabhl:

T=tuF(@a)t txFy(a) + + t.F.(@,)

A=a ta,taz+...+a,

Target: Minimize T under a constraint A

14

MultiAmdahl:

« —>< t,
¢ o
* Optimization using Lagrange

multipliers

Minimize execution time (T)
under an Area (a) constraint

i Fi(@) =t Fi(a)

w
o
2
o

™
Z
@
@
=]
=
@
=
o
@
@
o

F’= derivation accelerator function T—
a, = Area -0 a/(1-<)
= time

15

MultiAmdahl Framework

* Applying known techniques* to
new environments

® Can be used during system’s

definition and/or dynamically to
tune system

* Gossen’s second law (1854), Marginal utility, Marginal rate of substitution (Finance)

16

Example: CPU vs. Accelerators

Future GP CPU size vs. transistor budget growth

Test case:
4 accelerators and GP (big) CPU

Applications: evenly distributed
benchmarks mix w/ 10% sequential code

=
o
=
=
=)
-
]
(%3]
()
e
]
T
-
[%4]
=
I
e
—

x1.0 x10.0
Transistor Budget
Heterogeneous Insight:
In an increased-transistor-budget-environment,
General Purpose (big) CPU importance will grow

x100.0

17

Example: CPU vs. Accelerators

GP CPU size vs. power budget

Test case:
4 accelerators and GP (big) CPU

Applications: evenly distributed
benchmarks mix w/ 10% sequential code

c
o
=
=
2
=
[%4]
()
@
=
o
e

x1.0 x0.5
Power Budget

Heterogeneous Insight:
In a decreased-power-budget-environment,
Accelerators importance will grow 18

What is F(a;)?

You can look at it as the acceleration vs.
area (or energy, power etc.) BUT

There are more parameters that impact the
function F(a;) e.g. LOCATION*

* example as part of the “Process In Storage”

19

d 90% of data in the world has been created in the
last 2 years

d By 2020 world’s data will grow 50 times from today

d =» Change the way we handle

O =» Big Data processing

UBig Data = big
d In most of the cases some of the data is irrelevant
(Extract Transform and Load (ETL)) for the solution
or its relevancy is simple (e.g. wordcount)
d In general there is a non repeated access to all the
“Big Data”
d What are the implications?

1 Heterogeneous computing —

1 example: Big Data memory access pattern
1 Potential savings

dData Movements

d Bandwidth

Heterogeneous computing :
Application Specific Accelerators

Accelerators
Tuned architectures

|

Performance/power

/7

—J

Apps range]
Apps behavior

Continue performance trend by tuned architecture to bypass current technological hurdles

3

Reduction of system’s energy In

U understand where energy Is wasted

4 Identify the energy hungry parts and performance
bottleneck

d Provide a TAILORED solution for Data Center*
usage

* It would not be simple

4

‘\ | ‘\ / ¢ -.' -

S S At
— \

a@-‘
"y
'

e —

Funnel

ey AN

pis & \" SN
"3 Non-Tefporak.

Memory Acces

'\

\
[l =rmamaCVVOLC L

101110000111 o

o ¥
- ‘v.‘ ! A.’f! X I 1 &

Does Big Data exhibit special
memory access pattern?

 Revisiting ALL Big Data items will cause huge/slow
data transfers from Data sources

 There are 2 access modes of memory operations:
* Temporal Memory Access
** Non-Temporal Memory access

d Many Big Data computations exhibit a Non-Temporal
Memory-Accesses and/or Funnel operation

Non-Temporal Memory access

Initial analysis: Hadoop-grep Single Memory Access Pattern

~50% of Hadoop-grep uniqgue memory references are single access
1800000 Count Of Uniques Addresses Access (10M acceses sampling window)

1600000
1400000

1200000

1000000 =4=Single Access
Multiple Access
800000

"
L]
[
9
]
T
o
L]
<
L)
3
z
[3
)
%

ﬁZZZ J b
,x;ﬁ ;’gﬂi—"“—f—;——

0 200 1200
Sampllng Wmdow #

Non-Temporal Memory Accesses

Preliminary Results

Access rate

[KB/s] I/O Utilization

80000

® WordCount;:

60000

Access to Storage:

40000
30000
20000
10000

10 20 30
Time [s]

Access rate

* Sort: (KBS /O

120000
Access to Storage: o000
[5]0]0]0]0]
40000

0] 200 400 600 800
Time [s]

40

1000

50 Time

1200 Time

11

Current systems

« Memory subsystem is tuned for “Temporal Memory Access”

NV Storage
 DRAM —tuned for repeated page access

A4

O Cache —tuned for repeated cache block access m

“Caches”

L2$

L1$

00GB/sec

= =
G

However, many Big Data applications exhibit
Non-Temporal Memory Accesses (NTMA)

12

Where energy Is wasted?
« DRAM

 Limited BW

13

Rough Energy Numbers (45nm)

Cache (64bit)
8KB 10pJ
32KB 20pJ
1MB 00pJ

1pJ DRAM 1.3-2.6nJ

4pJ

Instruction Energy Breakdown

r T r

I-Cache Access Register File Add
Access

From: Bill Dally (nVidia and Stanford), Efficiency and Parallelism, the challenges of future computing

Data Center Energy Specs

Power (% of peak)

ECPU EDRAM Disk Other

43 50 57 B4 7 79 86

Compute load (%)

93

Malladi, ISCA. 2012

Memory Subsystem - copies

Size BW

I \Vstorage ()

3GB/sec

GBs Copy 1 (main memory)
25GB/sec

10’s MBs Copy 2 (LL Cache)

MBs dﬂ Copy 3 (L2 Cache)

> Copy 4 (L1 Cache)
10’s KBs
500GB/sec

? Copy 5 (Registers) -

N 7

. =

KBs

Memory Subsystem — DRAM bypass == DDIO

BW

3-20GB/sec

Copy-1{main-memory)

25GB/sec
Copy 2 (LL Cache)
ﬁ Copy 3 (L2 Cache)

@ 0.5n J/B (DRAM)
10 - 20 GB/s NV BW Syrd Copy 4 (L1 Cache)
500GB/sec
@W — 10@ \'«

Copy 5 (Registers) -

Potential savings:

TB/sec

Reference: “Optimizing Read-Once Data Flow in Big-Data Applications” -

Morad, Ghomron, Erez, Weiser, Kolodny, in Computer Architecture Letters Journal 2016 17

Initial Experiment

»

»

»

»

Example program: read file from disk and XOR all values
DDIO-aware code on a real system

.

.

.

.

.

Small buffer (fit into 2 ways of LLC)

Low latency from write to read (avoid evictions)

Zero-copy (O_DIRECT flag)

Bypass OS page cache (O_DIRECT flag)

Run code on chip that is connected to the SSD (OS affinity)

Compare system with DDIO enabled and DDIO disabled
Measure runtime, power and energy

18

Bandwidth

When should we use Funnel at the Data source

19

Memory Hierarchy is Optimized for

A: Bandwidth issue =» System are built for Temporal Locality

Size BW Existing NTMA
BW Desired BW

TBs NV Storage
3-20GB/sec
GBs
25GB/sec

10’s MBs

MBs

10’s KBs
500GB/sec

‘TB/sec

- Highest Bandwidth

KBs

20

B: Memory access per operation impact BW

Read Once — Non-Temporal Memory Accesses ‘- e
as utifization

Bandwidth

Bandwidth

CPU Ut 34

- #of cores

Bandwidth
; CPU

Temporal Memory Accesses S iilizatiorN
” [%]

of cores

Hint: Memory access per operation

Solution:

Flow of “Non-Temporal Data Accesses”

Use Funnel when Bandwidth bottleneck occurs=»
- “high” memory accesses per Instruction
- Limited BW
- Non temporal locality memory access

ey
—
4

Registersv

*private communication with: Moinuddin Qureshi 22

“Funnel”ing “Read-Once” data in storage

Flash Flash memory bus 0

Controller

Embedded

Processors Flash

Controller
Host

Interface
Controller
DRAM
Controller

*Kang, Yangwook, Yang-suk Kee, Ethan L. Miller, and Chanik Park. "Enabling cost-effective data processing with smart ssd." In Mass Storage Systems
and Technologies (MSST), 2013 IEEE 29th Symposium on, pp. 1-12. IEEE, 2013.
**K. Eshghi and R. Micheloni. “SSD Architecture and PCI Express Interface” 23

http://www.ssrc.ucsc.edu/media/papers/kang-msst13.pdf
https://www.google.co.il/url?sa=t&rct=j&q=&esrc=s&source=web&cd=14&cad=rja&uact=8&ved=0CGoQFjAN&url=http://www.springer.com/cda/content/document/cda_downloaddocument/9789400751453-c1.pdf?SGWID=0-0-45-1354508-p174543000&ei=CSVzVb2ILsPpUo

42

Analytical model of the Funnel

Bandwidth (BW) IN“‘ ‘ B

v. BWour/BWiy

Bandwidth BW OUT

24

Purposed Architecture

(N
L
PCle L Funnel
\ SSD Storage)

CPU performs NTMA and TMA work

Basellne Configuration

B=Bandwidth

Funnel Configurations

. ’:unnel

SSD performs NTMA work CPU performs TMA work

~\

PCle

[
L

J

43

44 —urlririel

. PCle

B=Bandwidth

Performance

Felriorifarice

CPU performs NTMA SSD performs NTMA
and TMA work work

Performance Graph

CPU becomes
<4+——— bottleneck

CPU becomes
bottleneck

/

Lnne._] [l P] pc.e(-]

CPU performs: TMA
work

— baseline
— funnel

1.0

26

Funnel energy

i] PCle }Funnel_ i ’F””l PCIE{ -

SSD Storage,

CPU performs NTMA SSD performs NTMA CPU performs TMA

B=Bandwidth
and TMA work work work

Comparing funnel with baseline energy

Funnel processor
overhead

i onfigu
e\\l’\e c CPU becomes the
pPCleis the pottieneck bottleneck

= baseline
== funnel

DOLUSNECK

27

Solution: ?

Non-Temporal Memory Accesses should be
processed as close as possible to the data source

Data that exhibit Temporal Locality should use
current Memory Hierarchy

Use Machine Learning (context aware*) to distinguish
between the two phases

Open questions:

SW model

Shared Data

HW implementation

Computational requirement at the “Funnel”

*Reference: “Semantic locality and Context based prefetching” Peled, Mannor, Weiser, Etsion in ISCA 2015 30

Summary

* Lots of potential icebreaking potential research

Hetro

Big Data related
Memory access is a critical path in computing

* Funnel should be used for:

Reduction of Data movement

Free up system’s memory resources (re-Spark)

Solve the System’s BW issues for “Read Once” cases
Simple-energy-efficient engines at the front end
Issues

31

