Sailing Basics



My moto:
Sailing - wind shift




Sailing competition
getting first

- What is the Strategy\of\Boat 17?

Boat 1

- What is the Strategy of Boat 2?7 _a
Boat 2

My Moto: Do not follow = Invent




25th American Cap — September 2374 1983

(Trophy was held by NYYC from 1857)

_ ‘ Liberty | against Australia Il
wind

7 rounds race; Status: Score 3:0to Liberty I, 4" round started

Start line
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Potential future research in computing

Heterogeneous systems’ optimization

memory subsystems - Process-in-Storage when?



d

d

The environment changes
= Slow down in Moore's law
= Slow down in the ability to enhance single core performance
> =» Heterogonous systems
= Big Data
» Potential change in the way we handle data
> =» new thinking about moving data?
Heterogeneous system optimization
Big Data --- data handling
= |s it data movement?
= |s it bandwidth?
Example



= Slow down in process technology
= Slow down in Single thread core performance trend
= Power limitation
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=>» The Era of Heterogeneous systems (we are there already)
» How to handle heterogeneousity?
» Heterogeneous vs. general purpose engine?
» Size, power, energy, location of the accelerators?
=» Application phase specific



1 Heterogeneous computing

* The Era of Heterogeneous systems

= HW/SW to fit application

= Dynamic tuning

= Accelerators

= = Optimizations: performance, energy efficiency
4 Big Data = big

d In general non repeated access to all the

“Big Data”
d What are the implications?



Heterogeneous computing

Accelerators *

|

Performance/power

—J\ :

Apps range

Continue performance trend by via Heterogeneous systems




Heterogeneous Computing

Accelerator

General_Purpose
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Heterogeneous Systems’
Environment

»

Environment with limited resources

Need to optimize system’s targets within
resource constrains

® Resources may be:
-Power, energy, area, space, $

® System's targets may be:

- Performance, power, energy, area, space, $

»
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Heterogeneous system

®* Heterogeneous system design under resource

constraint

how to divide resources (e.g. , power, energy) to achieve maximum
system’s output (e.g. performance, throughput, energy savings)

Example:

e, > e, —

3 n

«—t, >E—1t,

t; = execution time of an application’s section (run on a reference computing system)

(14 =)
a, A= z a;
! i=1

Accelerator target (an example): Minimize execution time under Area constraint
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MultiAmdabhl:

T=tuF(@a)t txFy(a) + + t.F.(@,)

A=a ta,taz+...+a,

Target: Minimize T under a constraint A
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MultiAmdahl:

« —>< t,
¢ o
* Optimization using Lagrange

multipliers

Minimize execution time (T)
under an Area (a) constraint

i Fi(@) =t Fi(a)

w
o
2
o

™
Z
@
@
=]
=
@
=
o
@
@
o

F’= derivation accelerator function T—
a, = Area -0 a/(1-<)
= time
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MultiAmdahl Framework

* Applying known techniques* to
new environments

® Can be used during system’s

definition and/or dynamically to
tune system

* Gossen’s second law (1854), Marginal utility, Marginal rate of substitution (Finance)
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Example: CPU vs. Accelerators

Future GP CPU size vs. transistor budget growth

Test case:
4 accelerators and GP (big) CPU

Applications: evenly distributed
benchmarks mix w/ 10% sequential code
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x1.0 x10.0
Transistor Budget
Heterogeneous Insight:
In an increased-transistor-budget-environment,
General Purpose (big) CPU importance will grow

x100.0
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Example: CPU vs. Accelerators

GP CPU size vs. power budget

Test case:
4 accelerators and GP (big) CPU

Applications: evenly distributed
benchmarks mix w/ 10% sequential code
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x1.0 x0.5
Power Budget

Heterogeneous Insight:
In a decreased-power-budget-environment,
Accelerators importance will grow 18



What is F(a;)?

You can look at it as the acceleration vs.
area (or energy, power etc.) BUT

There are more parameters that impact the
function F(a;) e.g. LOCATION*

* example as part of the “Process In Storage”
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d 90% of data in the world has been created in the
last 2 years

d By 2020 world’s data will grow 50 times from today

d =» Change the way we handle

O =» Big Data processing



UBig Data = big
d In most of the cases some of the data is irrelevant
(Extract Transform and Load (ETL)) for the solution
or its relevancy is simple (e.g. wordcount)
d In general there is a non repeated access to all the
“Big Data”
d What are the implications?



1 Heterogeneous computing —

1 example: Big Data memory access pattern
1 Potential savings

dData Movements

d Bandwidth



Heterogeneous computing :
Application Specific Accelerators

Accelerators
Tuned architectures

|

Performance/power

/7
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Apps range ]
Apps behavior

Continue performance trend by tuned architecture to bypass current technological hurdles
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Reduction of system’s energy In

U understand where energy Is wasted

4 Identify the energy hungry parts and performance
bottleneck

d Provide a TAILORED solution for Data Center*
usage

* It would not be simple
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Does Big Data exhibit special
memory access pattern?

 Revisiting ALL Big Data items will cause huge/slow
data transfers from Data sources

 There are 2 access modes of memory operations:
* Temporal Memory Access
** Non-Temporal Memory access

d Many Big Data computations exhibit a Non-Temporal
Memory-Accesses and/or Funnel operation



Non-Temporal Memory access

Initial analysis: Hadoop-grep Single Memory Access Pattern

~50% of Hadoop-grep uniqgue memory references are single access
1800000 Count Of Uniques Addresses Access (10M acceses sampling window)
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Non-Temporal Memory Accesses

Preliminary Results

Access rate

[KB/s] I/O Utilization
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Current systems

« Memory subsystem is tuned for “Temporal Memory Access”

NV Storage
 DRAM —tuned for repeated page access

A4

O Cache —tuned for repeated cache block access m

“Caches”

L2$

L1$

00GB/sec

= =
G

However, many Big Data applications exhibit
Non-Temporal Memory Accesses (NTMA)
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Where energy Is wasted?
« DRAM

 Limited BW
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Rough Energy Numbers (45nm)

Cache (64bit)
8KB 10pJ
32KB 20pJ
1MB 00pJ

1pJ DRAM 1.3-2.6nJ

4pJ

Instruction Energy Breakdown

r T r

I-Cache Access Register File Add
Access

From: Bill Dally (nVidia and Stanford), Efficiency and Parallelism, the challenges of future computing




Data Center Energy Specs

Power (% of peak)

ECPU  EDRAM Disk Other

43 50 57 B4 7 79 86

Compute load (%)

93

Malladi, ISCA. 2012




Memory Subsystem - copies

Size BW

I \Vstorage ()

3GB/sec

GBs Copy 1 (main memory)
25GB/sec

10’s MBs Copy 2 (LL Cache)

MBs dﬂ Copy 3 (L2 Cache)

> Copy 4 (L1 Cache)
10’s KBs
500GB/sec

? Copy 5 (Registers) -

N 7

. =

KBs



Memory Subsystem — DRAM bypass == DDIO

BW

3-20GB/sec

Copy-1{main-memory)

25GB/sec
Copy 2 (LL Cache)
ﬁ Copy 3 (L2 Cache)

@ 0.5n J/B (DRAM)
10 - 20 GB/s NV BW Syrd Copy 4 (L1 Cache)
500GB/sec
@W — 10@ \'«

Copy 5 (Registers) -

Potential savings:

TB/sec

Reference: “Optimizing Read-Once Data Flow in Big-Data Applications” -

Morad, Ghomron, Erez, Weiser, Kolodny, in Computer Architecture Letters Journal 2016 17



Initial Experiment

»

»

»

»

Example program: read file from disk and XOR all values
DDIO-aware code on a real system

.

.

.

.

.

Small buffer (fit into 2 ways of LLC)

Low latency from write to read (avoid evictions)

Zero-copy (O_DIRECT flag)

Bypass OS page cache (O_DIRECT flag)

Run code on chip that is connected to the SSD (OS affinity)

Compare system with DDIO enabled and DDIO disabled
Measure runtime, power and energy
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Bandwidth

When should we use Funnel at the Data source

19



Memory Hierarchy is Optimized for

A: Bandwidth issue =» System are built for Temporal Locality

Size BW Existing NTMA
BW Desired BW

TBs NV Storage
3-20GB/sec
GBs
25GB/sec

10’s MBs

MBs

10’s KBs
500GB/sec

‘TB/sec

- Highest Bandwidth

KBs
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B: Memory access per operation impact BW

Read Once — Non-Temporal Memory Accesses ‘- e
as utifization

Bandwidth

Bandwidth

CPU Ut 34

- #of cores

Bandwidth
; CPU

Temporal Memory Accesses S iilizatiorN
” [%]

# of cores

Hint: Memory access per operation




Solution:

Flow of “Non-Temporal Data Accesses”

Use Funnel when Bandwidth bottleneck occurs=»
- “high” memory accesses per Instruction
- Limited BW
- Non temporal locality memory access

ey
—
4

Registersv

*private communication with: Moinuddin Qureshi 22



“Funnel”ing “Read-Once” data in storage

Flash Flash memory bus 0

Controller

Embedded

Processors Flash

Controller
Host

Interface
Controller
DRAM
Controller

*Kang, Yangwook, Yang-suk Kee, Ethan L. Miller, and Chanik Park. "Enabling cost-effective data processing with smart ssd." In Mass Storage Systems
and Technologies (MSST), 2013 IEEE 29th Symposium on, pp. 1-12. IEEE, 2013.
**K. Eshghi and R. Micheloni. “SSD Architecture and PCI Express Interface” 23



http://www.ssrc.ucsc.edu/media/papers/kang-msst13.pdf
https://www.google.co.il/url?sa=t&rct=j&q=&esrc=s&source=web&cd=14&cad=rja&uact=8&ved=0CGoQFjAN&url=http://www.springer.com/cda/content/document/cda_downloaddocument/9789400751453-c1.pdf?SGWID=0-0-45-1354508-p174543000&ei=CSVzVb2ILsPpUo
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Analytical model of the Funnel

Bandwidth (BW) IN“‘ ‘ B

v. BWour/BWiy

Bandwidth BW OUT
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Purposed Architecture

( N
L
PCle L Funnel
\ SSD Storage )

CPU performs NTMA and TMA work

Basellne Configuration

B=Bandwidth

Funnel Configurations

. ’:unnel

SSD performs NTMA work CPU performs TMA work
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[
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. PCle

B=Bandwidth

Performance

Felriorifarice

CPU performs NTMA SSD performs NTMA
and TMA work work

Performance Graph

CPU becomes
<4+——— bottleneck

CPU becomes
bottleneck

/

Lnne._] [l P] pc.e( -]

CPU performs: TMA
work

— baseline
— funnel

1.0
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Funnel energy

i ] PCle }Funnel_ i ’F””l PCIE{ -

SSD Storage,

CPU performs NTMA SSD performs NTMA CPU performs TMA

B=Bandwidth
and TMA work work work

Comparing funnel with baseline energy

Funnel processor
overhead

i onfigu
e\\l’\e c CPU becomes the
pPCleis the pottieneck bottleneck

= baseline
== funnel

DOLUSNECK

27




Solution: ?

Non-Temporal Memory Accesses should be
processed as close as possible to the data source

Data that exhibit Temporal Locality should use
current Memory Hierarchy

Use Machine Learning (context aware*) to distinguish
between the two phases

Open questions:

SW model

Shared Data

HW implementation

Computational requirement at the “Funnel”

*Reference: “Semantic locality and Context based prefetching” Peled, Mannor, Weiser, Etsion in ISCA 2015 30



Summary

* Lots of potential icebreaking potential research

Hetro

Big Data related
Memory access is a critical path in computing

* Funnel should be used for:

Reduction of Data movement

Free up system’s memory resources (re-Spark)

Solve the System’s BW issues for “Read Once” cases
Simple-energy-efficient engines at the front end
Issues

31






